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Abstract: We study in detail the stability properties of the simplest F -term uplifting

mechanism consistent with the integration of heavy moduli. This way of uplifting vacua

guarantees that the interaction of the uplifting sector with the moduli sector is consistent

with integrating out the heavy fields in a supersymmetric way. The interactions between

light and heavy fields are characterized in terms of the Kähler invariant function, G =

K + log |W |2, which is required to be separable in the two sectors. We generalize earlier

results that when the heavy fields are stabilized at a minimum of the Kähler function G

before the uplifting (corresponding to stable AdS maxima of the potential), they remain in a

perturbatively stable configuration for arbitrarily high values of the cosmological constant

(or the Hubble parameter during inflation). By contrast, supersymmetric minima and

saddle points of the scalar potential are always destabilized for sufficiently large amount of

uplifting. We prove that these results remain unchanged after including gauge couplings

in the model. We also show that in more general scenarios, where the Kähler function is

not separable in the light and heavy sectors, the minima of the Kähler function still have

better stability properties at large uplifting than other types of critical points.
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1. Introduction

The search for de Sitter (dS) vacua in string theory has received a lot of attention moti-

vated by the need to construct realistic late-time cosmology scenarios. In 2003 Kallosh,

Kachru, Linde and Trivedi (KKLT) [1] provided the first example of a mechanism to obtain

stable de Sitter vacua in the framework of Type IIB string theory. Their two-step approach

was to invoke background fluxes and non-perturbative effects in order to freeze the heavy

moduli present in the compactification while preserving supersymmetry, and then add ex-

tra supersymmetry breaking effects in a controlled way, i.e. not interfering with moduli

stabilization, so that the anti-de Sitter (AdS) minimum would be uplifted to dS.

In practice, in the KKLT paper and in many sequels that discussed mechanisms of

uplifting of the AdS minimum, it is assumed that the complex structure moduli are in-

tegrated out before supersymmetry breaking effects are taken into account. The effective

field theory left after freezing these fields is assumed to be N = 1 supergravity. In other

words, the heavy moduli are integrated out supersymmetrically [2] and are assumed to be

consistently decoupled — in the sense of [3 – 5] — from the light fields.

The problem, as discussed in [3 – 8], is that in general it cannot be taken for granted

that the supersymmetry breaking corrections added to the effective action are consistent
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with the process of supersymmetrically integrating out part of the moduli. The reason

is very simple: the heavy fields should be integrated out in the full theory, including the

supersymmetry breaking modifications. Any other way to proceed may lead to inconsis-

tencies. For example, the minimum where the moduli were stabilized might shift by the

supersymmetry breaking effects, in which case the low energy effective theory would have

the heavy fields — the complex structure moduli in this case — fixed at a point which is

not even an extremum of the scalar potential.

In this article we will study a mechanism of F -term uplifting [9 – 11] consistent with the

supersymmetric integration of the heavy moduli [5, 7]. The basic idea of F -term uplifting

consists of adding an extra sector to the theory defined by the Kähler and complex structure

moduli which breaks supersymmetry separately, lifting the vacuum to dS. In order to avoid

that the interactions between the two sectors spoil the stabilization of moduli it is required

that they are only weakly coupled. In the original papers on F -term uplifting this was

achieved by requiring that the two sectors interact only with gravitational strength, i.e.

coupling the sectors as:

K = K(moduli) + K(uplift) W = W (moduli) + W (uplift), (1.1)

and requesting all dimensionful couplings in the uplifting sector to be small compared to the

Planck mass. However this ansatz does not satisfy in general the necessary conditions for

consistent supersymmetric decoupling of the heavy moduli [3 – 5, 8]. For later developments

on F-term uplifting mechanism see [12 – 30].

In these types of models it is tempting to argue that the effects of truncating the heavy

fields inconsistently would be too small to affect seriously the physics of the effective the-

ory. Although this might be correct if we are only interested in low energy phenomenology,

when the effective theory is used to describe inflation the situation is much more subtle. In

this scenario the inflationary sector is what plays the role of the supersymmetry breaking

sector and, as in the case of uplifting, its interactions with the moduli fields have to be

consistent with the supersymmetric integration of the heavy moduli. Recently Davis and

Postma [31] discussed an enlightening example that illustrates the problems of an incon-

sistent truncation in an inflationary model. They studied the F -term hybrid inflationary

model proposed in [32] which includes a moduli sector of the KKLT or racetrack [33] form.

This model gives viable inflation as long as the volume modulus is assumed to be fixed

during inflation and some of the parameters are fine-tuned. However, this truncation of

the modulus field is not consistent. When the dynamics of this field are taken into account

it can be seen that the field does not remain constant during the inflationary period, it

shifts from its stable value at the end of inflation. The shift results in corrections to the

inflationary potential that spoil its flatness and therefore ruin inflation (see e.g. [8] for a

recent discussion and references).

In a recent paper [5] we revisited the conditions for consistent supersymmetric de-

coupling of the heavy moduli. We found that these conditions can be translated into a

particular form of the Kähler invariant function G = K + log |W |2. For example, if the

Kähler potential is separable, K = K(h)(heavy)+K(l)(light), it is sufficient to require that
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the full Kähler invariant function is also separable:

G = G(h)(heavy) + G(l)(light), (1.2)

or, equivalently, that the superpotential factorizes in the two sectors:

W = W (h)(heavy)W (l)(light). (1.3)

Note that consistent decoupling does not require the scalar manifold to be a product, and

thus this is just a special case of the class of interactions consistent with the supersymmetric

integration of the heavy fields.

The ansatz (1.2) has a long history. In the early 80’s it was studied as mechanism

to couple the visible matter fields to a supersymmetry breaking sector or the inflationary

sector [34, 35], and more recently has been discussed as a sufficient condition to integrate out

heavy chiral multiplets in a supersymmetric way [2]. It has also appeared in connection with

brane inflationary models and moduli stabilization, in particular in the D3/D7 model [36],

where it was shown that the ansatz preserves the AdS flat direction (from shift symmetry)

due to the BPS character of the configuration.

In [7] we studied the possibility of using a separable Kähler function (1.2) as an alter-

native way to couple the heavy moduli to the supersymmetry breaking sector in F -term

uplifting mechanisms. This type of coupling ensures that if the heavy fields are integrated

out at a supersymmetric critical point they remain at a critical point of the potential after

adding the supersymmetry breaking sector. Moreover, the F-terms of the heavy moduli

remain zero after the uplifting, and thus supersymmetry breaking receives no contribution

from the heavy fields.

It is remarkable that, in spite of the direct couplings present in W , the light and heavy

sectors almost do not interact [7, 5] even when supersymmetry is broken by the light sector.

Actually using the ansatz (1.2) the perturbative stability analysis of the uplifted vacuum

decouples in the two sectors. In particular the stability condition along the heavy field

directions has a simple form, it has no dependence on the details of the uplifting sector

other than through a single parameter that measures the amount of uplifting, H/m3/2, the

ratio of the Hubble expansion rate to the gravitino mass of the uplifted vacuum. In [7] we

analyzed a toy model with a single heavy field and found a region in parameter space where

the critical points of the heavy sector remain stable1 for arbitrary values of this uplifting

parameter H/m3/2. Interestingly, these critical points are stable AdS maxima before the

uplifting, and in our model correspond to minima of the Kähler function G(h)(heavy).

In this paper we will prove that this result can be extended to an arbitrary number of

chiral fields in the heavy supersymmetric sector, provided they satisfy (1.2), and that it

survives the inclusion of gauge interactions. Also, in more general scenarios where the

Kähler function is not required to be separable, we will prove using mild assumptions that

the supersymmetric AdS maxima of the potential always become stable for large enough

values of the uplifting parameter. The remarkable stability of dS vacua resulting from

1In this paper, as in reference [7], we only study the perturbative stability of the uplifted vacua and

therefore, after the uplifting, by stable vacua we mean local minima of the scalar potential.
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highly uplifted AdS local maxima had not been noticed before and constitutes one of the

main results in the paper.

Our work complements those of Gómez-Reino and Scrucca [9 – 11] and, more recently,

Covi et al. [26], who give necessary conditions for the stability of uplifted vacua along the

supersymmetry breaking directions, which we include in the light sector. Here instead

we obtain necessary and sufficient conditions for the stability of the supersymmetrically

integrated moduli, about which we have little information or observational input. We take

for granted the existence of a stable dS vacua in the effective theory for the light sector,

which therefore has to satisfy the conditions from [26]. We will return to this point at the

end of the paper.

In this work we will not make any specific assumptions about the origin of the set of

fields that are integrated out supersymmetrically. For example in the KKLT framework

they could be identified with both Kähler and complex structure moduli, or with the

complex structure moduli alone depending on the masses of each set of fields. However it

should be clear that our results are not restricted to type IIB compactifications. Regarding

the light sector we expect it to include both the visible sector and the hidden sector where

supersymmetry is broken spontaneously.

This paper is organized as follows. We begin in section 2 with a quick review of the

relevant results and notation. In particular we recall the basic features of the F -term

uplifting mechanism characterized by the ansatz (1.2). In section 3 we study the relation

between the critical points of the Kähler invariant function G and the scalar potential

and prove a one-to-one correspondence between the minima of G and the supersymmetric

(AdS) local maxima of the potential. The results in section 3 are completely general —

we make no assumptions about the form of G, only that supersymmetry is unbroken. At

the same time we introduce the technique used in later sections for the stability analysis

of the uplifted vacua. In section 4 we analyse the stability of the heavy fields in F-term

uplifted vacua where the coupling to the light (supersymmetry breaking) sector is given

the ansatz (1.2). We extend the results of reference [7] to an arbitrary (supersymmetric)

heavy sector; we also consider the effect of gauge couplings and D-terms and show that the

results are unchanged for consistently decoupled charged fields. Finally, in section 5, we

consider more general uplifting scenarios where the coupling between the light and heavy

fields no longer satisfies (1.2) but only the milder condition K = K(h)(heavy)+K(l)(light).

We finish with a summary of our results and a discussion in section 6.

2. F -term uplifting and the integration of heavy moduli

2.1 Notation and conventions

We work in units of the reduced Planck mass, 8πM2
p = 1. We start by recalling that the

N = 1 supergravity action involving scalars and gauge fields (chiral and gauge superfields)

is entirely described by three functions of the scalars: the Kähler potential K(ξ, ξ̄), the

holomorphic superpotential W (ξ) and the gauge kinetic functions fab(ξ). The bosonic part
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of the action is

S =

∫

d4x
√−g

(

1

2
R + T + Lgauge − V

)

. (2.1)

It can be shown that the action and supersymmetry transformations are invariant under

Kähler transformations,

K → K + h(ξ) + h̄(ξ̄) W → We−h(ξ), (2.2)

with h(ξ) an arbitrary holomorphic function. Actually, if W 6= 0, the action can be written

in terms of the Kähler invariant function G = K+log |W |2 and the gauge kinetic functions.

In a model with nc chiral multiplets and nv vector multiplets, we can write the kinetic terms

of the scalar fields ξI , ξĪ = (ξI)∗ using the Kähler function G(ξ, ξ̄) as follows

T = GIJ̄ ∇µξI∇µξJ̄ , where GIJ̄ ≡ ∂I∂J̄G = ∂I∂J̄K, I, J = 1, . . . , nc. (2.3)

Here we have denoted the gauge covariant derivatives by ∇µξI = ∂µξI − Aa
µk I

a (ξ), and

k I
a (ξ) are the Killing vectors that define the gauge transformations of the scalars:

δgaugeξ
I = k I

a (ξ)αa, a = 1, . . . , nv, (2.4)

where αa are the gauge parameters. The kinetic terms of the gauge fields are determined

by the (holomorphic) gauge kinetic functions fab(ξ):

Lgauge = −1

4
(Re fab)F

a
µνF bµν +

1

4
√−g

(Im fab)F
a
µνǫ

µνρσF b
ρσ. (2.5)

The scalar potential includes a contribution from F-terms and D-terms

V = VF + VD, (2.6)

where VF and VD can be written in as a function of the auxiliary fields of the chiral and

gauge superfields, F I and Da respectively:

VF = GIJ̄F IF J̄ − 3eG = eG(GIJ̄GIGJ̄ − 3), (2.7a)

VD =
1

2
Re(fab)D

aDb. (2.7b)

The auxiliary fields have equations of motion that can be solved algebraically in terms of

the chiral fields:

F I = eG/2GIJ̄GJ̄ (2.8a)

Da = i(Re f)−1abkI
bGI = −i(Re f)−1abkĪ

bGĪ . (2.8b)

The two expressions given for the D-terms are equivalent due to the gauge invariance of

the Kähler function G(ξ, ξ̄) [2]:

δgaugeG = (kI
aGI + kĪ

aGĪ)α
a = 0, for all a = 1, . . . , nv. (2.9)
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In this paper we will assume that there are no constant Fayet-Iliopoulos terms present,

since these require a more careful treatment that is outside the scope of our present study.

The N = 1 supersymmetry transformations of the fermions in the chiral and vector

multiplets χI and λa will be of special relevance in the following discussion:

δχI
L =

1

2
γµ∇µξIǫR − 1

2
e

1

2
KKIJ̄DJ̄W̄ ǫL (2.10a)

δλa =
1

4
γµνF a

µνǫ +
1

2
iDaγ5ǫ (2.10b)

Here ǫ is the parameter of the supersymmetry transformations, and γµ represent the

gamma matrices as usual. The subscripts R and L of the fermions stand for right and left

chirality respectively:

χI
R =

1

2
(1 − γ5)χI

R χI
L =

1

2
(1 + γ5)χI

L (2.11)

From (2.10) we can see that in a homogeneous background (∇µξI = F a
µν = 0), a set

of necessary conditions for unbroken supersymmetry is:

DIW = 0 for all I = 1, . . . , nc. (2.12)

Equivalently this condition can be written in terms of the Kähler function as:

∂IG(ξ, ξ̄) = 0 for all I = 1, . . . , nc. (2.13)

Note that although it is always possible to break supersymmetry spontaneously by non-

vanishing F -terms and zero D-terms (2.10), the relations (2.8a) and (2.8b) imply that non-

vanishing D-terms necessarily require non-vanishing F -terms, and therefore supersymmetry

can never be broken by D-terms alone [37].

The result (2.13) implies, together with the expression for the scalar potential (2.7a)

and (2.7b), that supersymmetric critical points ξI
0 with non vanishing superpotential

W (ξ0) 6= 0 always have a negative vacuum energy, i.e. they are AdS critical points:

V (ξ0) = −3eG(ξ0) < 0. (2.14)

Interestingly supersymmetric critical points are always perturbatively stable, regardless

of being local minima, maxima or saddle points. The reason is that in an AdS back-

ground a fluctuation with a tachyonic mass might still be stable as long as it satisfies the

Breitenlohner-Freedman bound [38]:

m2 ≥ 3

4
V (ξ0), (2.15)

which is always fulfilled by supersymmetric critical points.
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2.2 Uplifting and consistent integration of heavy moduli

Let us now review the basic features of the F -term uplifting mechanism proposed in [7]. In

this new class of F -term uplifting the couplings between the heavy moduli and the uplifting

sector are consistent with the requirements found in [5] for the supersymmetric integration

of heavy moduli. The coupling between the heavy moduli, Hα, and the uplifting sector,

which belongs to the set of light fields Li, is defined in terms of an ansatz for the Kähler

function of the form (1.2):

G(H, H̄, L, L̄) = A(H, H̄) + B(L, L̄). (2.16)

In the absence of gauge interactions the scalar potential derived from this ansatz can

be seen to be, using (2.7a):

V = eA+B
(

Aαβ̄AαAβ̄ + Bij̄BiBj̄ − 3
)

. (2.17)

Fixing the heavy fields at the supersymmetric critical point Hα
0 we obtain the effective

potential of the low energy theory, which reduces to the simple expression:

V (H0, L) = eA(H0)Vlight(L), (2.18)

where Vlight = eB(Bij̄BiBj̄−3) is the scalar potential of the uplifting sector when considered

alone. The uplifting properties of this ansatz can be summarized as follows:

• Suppose that Hα
0 is a supersymmetric critical point of the heavy sector, and Li

0 is a

critical point of Vlight, then the field configuration (Hα
0 , Li

0) is a critical point of the

full potential.

• The value of the potential of the light sector Vlight(L) at the critical point Li
0 deter-

mines whether the supersymmetric vacuum is lifted to dS, Minkowski or remains AdS:

Vlight(L) > 0 =⇒ (Hα
0 , Li

0) is a dS vacuum

Vlight(L) = 0 =⇒ (Hα
0 , Li

0) is a Minkowski vacuum

Vlight(L) < 0 =⇒ (Hα
0 , Li

0) is an AdS vacuum.

• If there is more than one supersymmetric configuration of the heavy sector, all of

them become degenerate when uplifted to Minkowski (note that this makes the

possibility of topological inflation quite natural).

In view of the direct couplings in (2.17) one might think that the two sectors strongly

influence each other and therefore the uplifting would easily destabilize the heavy moduli,

however in [7] we found that the two sectors almost do not interact. We studied the pertur-

bative stability of vacua of the form (Hα
0 , Li

0) where Hα
0 is a supersymmetric configuration

of the heavy sector and Li
0 a critical point of Vlight. We found that the mass matrix around

this vacuum is block diagonal in the two sectors, meaning that there are no quadratic

interactions between the fluctuations of the heavy and light fields:

∂2
iαV (H0, L0) = 0, ∂2

iᾱV (H0, L0) = 0. (2.19)

– 7 –
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Actually it turns out that this is a prerequisite for freezing the heavy fields consistently.

To integrate out the fluctuations with large masses around a given vacuum first we have

to find their mass spectrum, which requires diagonalizing the mass matrix, and only after

having identified the heavy modes can we set them to zero consistently. Proceeding in

this way, by construction, the mass matrix at the vacuum is always block diagonal in the

massive and light modes.

This result allows us to study the stability of the two sectors separately. In the case

of the supersymmetry breaking sector it is possible to prove a remarkably simple result,

namely that the vacuum (Hα
0 , Li

0) is perturbatively stable with respect to fluctuations of

the light fields as long as Li
0 is a minimum of the potential of the light sector Vlight(L). For

the heavy sector it is more difficult to obtain model independent statements concerning

the perturbative stability. Nevertheless in [7] we where able to give a few general results:

• The stability analysis for fluctuations of the heavy fields depends on the light sector

only through a single parameter b = Bij̄BiBj̄ |L0
that controls the amount of uplifting,

b − 3 = e−GV =

(

3H

m3/2

)2

(2.20)

• Any vacuum becomes stable or neutrally stable with respect of fluctuations of the

heavy fields after being uplifted to Minkowski. A similar result was found in [39],

where Blanco-Pillado et al. argued that SUSY vacua with vanishing cosmological

constant are automatically stable, up to flat directions.

• For large amounts of uplifting the full potential becomes approximately:

V (H,L) ≈ b eA+B, (2.21)

and therefore the stable configurations of the heavy sector are those minimizing the

Kähler function A(H, H̄).

In order to understand better the details of this new uplifting mechanism we analyzed

the perturbative stability of the supersymmetric sector in a toy model with only one heavy

field. The result of this study was quite surprising, we found that the supersymmetric AdS

maxima of the potential at zero uplifting (b = 0), which are stable since they satisfy the

Breitenlohner-Freedman bound, remain stable configurations of the heavy sector for any

uplifting. Interestingly, we also found that these AdS maxima coincide with the minima of

the Kähler function. When we studied the uplifting of AdS minima of the scalar potential

we recovered the standard result, for sufficiently large amount of uplifting these configura-

tions always become unstable. This result opens a new door for the construction of stable

dS vacua, instead of constraining ourselves to the uplifting of AdS minima we can also use

the AdS maxima of the potential which seem to have better stability properties, at least

for a certain class of interactions between the moduli and the uplifting sectors.

In [5] we also considered the case where the gauge interactions of the light sector

were turned on. We found that, as long as the heavy fields are consistently decoupled,

– 8 –
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the gauge interactions in the light sector do not change the results listed above. The

consistent decoupling of the heavy sector imposes certain restrictions on the type of allowed

gauge interactions. In particular any gauge field that survives at low energies should not

interact simultaneously with both heavy and light fields, otherwise the heavy fields could be

sourced in the low energy theory due to the gauge interactions. In practice this requirement

means that the Killing vectors of the light sector can only have components along the light

directions, ki
a. Moreover, a consistent decoupling also demands that the critical points of

the heavy sector do not shift due to the presence of the light sector, implying that the

Killing vectors and the gauge kinetic functions of the light sector cannot depend on the

heavy fields, k = ki
a(L), fab(L). In this situation the contribution to the scalar potential

generated by gauge interactions, the D-term potential (2.7b), is independent of the heavy

fields, and thus the stability analysis along the heavy directions is unaffected.

3. Stability of supersymmetric critical points

In this section we study the stability properties of a supersymmetric critical point in a

completely general setup. We take the action to be characterized by a Kähler potential

G(ξ, ξ̄), and we allow for an arbitrary gauge coupling defined by the gauge kinetic functions

fab(ξ) and Killing vectors k(ξ)Ia. We will relate the stability of the supersymmetric vacua

to the curvature of the Kähler function, and in particular we will show that maxima of the

scalar potential always correspond to minima of the Kähler function.

3.1 Analysis of the Kähler function

We begin by studying the character of the critical points of the Kähler function, which is

a simple calculation and will serve us to introduce the technique we will use later in the

analysis of the scalar potential. The Taylor expansion of the Kähler potential G(ξI , ξĪ)

around a supersymmetric critical point ξI
0 , reads:

G=G(ξ0)+GI (ξ0)ξ̂
I+GĪ(ξ0)ξ̂

Ī+GIJ̄(ξ0) ξ̂I ξ̂J̄+
1

2
GIJ (ξ0) ξ̂I ξ̂J+

1

2
GĪ J̄(ξ0) ξ̂Ī ξ̂J̄+. . . , (3.1)

where we define ξ̂I = ξI − ξI
0 . Note that the first order terms vanish since GI(ξ0) = 0. In

order to know if ξI
0 corresponds to a minimum, a maximum or a saddle point the Kähler

function we need to find the eigenvalues of its Hessian evaluated at the critical point

(

GIJ̄ GIJ

GĪ J̄ GĪJ

)

ξ0

. (3.2)

This expression simplifies considerably by redefining the ξI fields so that they have canon-

ical kinetic terms at the critical point, GIJ̄(ξ0) = δIJ̄ . With this choice of coordinates the

equation for the eigenvalues g takes the form:

det

(

(1 − g)1 X

X† (1 − g)1) = 0 (3.3)
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where we have used the matrix notation X = XT = GIJ(ξ0) and 1 = δIJ̄ . Using a known

property of determinants

det

(

M P

Q N

)

= det (MN − QP ) , provided that QN = NQ and det(M) 6= 0, (3.4)

for square submatrices M,N,P,Q, we can see that g is a solution of (3.3) if and only if it

also solves:

det
(

(1 − g)2 − X†X
)

= 0. (3.5)

Strictly speaking this equation was derived for g 6= 1, but it is not difficult to check that it

also gives the correct solution for g = 1. In order to solve this equation we use the freedom

of field redefinition once more. Requiring that the fields have canonical kinetic terms is not

enough to fix the choice of fields completely, we can still redefine the fields by a constant

unitary transformation of the form ξ̃I = U I
J ξJ . Under this field redefinition the matrix X

and the combination X†X transform as:

X = UT X̃U, X†X = U † (X̃†X̃)U, where U = U I
J , (3.6)

and therefore we can use this freedom to transform the Hermitian combination X†X into

a real diagonal matrix. The eigenvalues of X†X are necessarily nonnegative, and we will

denote them by |xλ|2, with λ labeling the p different eigenspaces. Moreover, the symmetry

of X implies that X†X = (XX†)∗, thus in the basis that makes X†X diagonal we have:

X†X = XX† = Diag(|x1|21n1
, . . . , |xp|21np), |xλ|2 ≥ 0, (3.7)

where nλ is the dimension of the eigenspace of eigenvalue |xλ|2. Note also that in this

particular basis the matrices X and X†X commute, which implies that X should be block

diagonal in each of the eigenspaces of X†X:

X = Diag(X1, . . . ,Xp) with X†
λXλ = |xλ|21nλ

. (3.8)

This means that the eigenvalue problem decouples for the m different eigenspaces of X†X,

and therefore the equation (3.5) takes a very simple form:

p
∏

λ=1

[

(1 − gλ)2 − |xλ|2
]nλ = 0, (3.9)

which we can solve easily giving the eigenvalues

g±λ = 1 ± |xλ|. (3.10)

which have multiplicity nλ. The different possibilities for the character of the critical point

Hα
0 are summarized in the following table:

Local minimum |xλ| < 1 for all λ = 1, . . . , p

Saddle point |xλ| > 1 for some or all λ (3.11)

The result (3.10) also indicates that, for each eigenvalue of X†X that satisfies |xλ|2 = 1,

the Kähler function has a flat direction and a local minimum (a trough) along one of the

complex directions ξI .
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3.2 Analysis of the scalar potential with vanishing D-terms

We will now analyze how the maxima and saddle points of the Kähler function relate to the

different types of supersymmetric critical points of the scalar potential. This is especially

interesting because the Kähler function is much easier to study. We will demonstrate a

remarkable result: the minima of the Kähler function are in one to one correspondence with

the supersymmetric AdS maxima of the scalar potential. We start assuming that there are

no gauge interactions, and in the next section we will prove this result in full generality.

The stability analysis of a supersymmetric critical point of the scalar potential can

be done using the same techniques of the previous subsection. Consider first its Taylor

expansion around a supersymmetric critical point ξI
0 :

V = V (ξ0) +
1

2
VIJ(ξ0) ξ̂I ξ̂J +

1

2
VĪ J̄(ξ0) ξ̂Ī ξ̂J̄ + VIJ̄(ξ0) ξ̂I ξ̂J̄ + · · · , (3.12)

where the second derivatives of the potential evaluated at the point ξI = ξI
0 can be calcu-

lated from (2.7a) using that GI(ξ0) = 0:

VIJ(ξ0) = −GIJ(ξ0)e
G(ξ0) (3.13)

VIJ̄(ξ0) = eG(ξ0)
[

GRS̄GRIGS̄J̄ − 2GIJ̄

]

ξ0
. (3.14)

In order to determine the character of the critical point ξI
0 we need to find the eigenvalues

of the Hessian of the potential, which gives the mass spectrum of the fluctuations around

ξI
0 . As in the previous subsection we define the fields ξI so that they have canonical kinetic

terms, GIJ̄ (ξ0) = δIJ̄ , and the Hermitian matrix X†X becomes diagonal. With this choice

the Hessian has the simple form:
(

VIJ̄ VIJ

VĪ J̄ VĪJ

)

ξ0

= eG(ξ0)

(

XX† − 21 −X

−X† X†X − 21) . (3.15)

Since in the basis we have chosen X†X = XX† it is easy to check that this matrix also

satisfies the first of the conditions necessary to apply (3.4), and we find that the equation

for the spectrum of masses m2 reads:

det
(

(X†X − (2 + e−G(ξ0) m2)1)2 − X†X
)

= 0. (3.16)

In order to use (3.4) we also need to assume that the following matrix is non singular,

det
(

X†X − (2 + e−G(ξ0) m2)1) 6= 0, (3.17)

but after some algebra it is possible to prove that (3.16) also gives the right result in

the singular case. As in the previous section we can use that X†X has the block diag-

onal form (3.8) to show that the eigenvalue problem can be decomposed in each of the

eigenspaces of X†X. Using this fact the eigenvalue equation (3.16) can be written as

p
∏

λ=1

[

(|xλ|2 − 2 − e−G(ξ0) m2)2 − |xλ|2
]nλ

= 0. (3.18)

– 11 –



J
H
E
P
1
1
(
2
0
0
8
)
0
0
3

Therefore the spectrum of masses at the supersymmetric critical point is given by:

m2
±λ = eG(ξ0)(|xλ|2 − 2 ± |xλ|) = eG(ξ0)

(

(

|xλ|2 ±
1

2

)2

− 9

4

)

. (3.19)

Each of these energy levels contains nλ different excitations with the same mass. The set of

quantities |xλ| determine which type of extremum the supersymmetric critical point ξI
0 is:

|xλ| > 2 for all λ ⇒ local AdS minimum,

|xλ| < 1 for all λ ⇒ local AdS maximum, (3.20)

and any other combination corresponds to AdS saddle points (|xλ| = 1, 2 give flat direc-

tions). The result (3.19) also provides a proof of the stability of all supersymmetric critical

points, regardless of the possible negative curvature of the potential. Since all these critical

points are AdS, the perturbative stability is determined by the Breitenlohner-Freedman

bound (2.15), which is always satisfied as is clear from (3.19):

m2 ≥ −9

4
eG(ξ0) =

3

4
V (ξ0), (3.21)

Now we already have at hand all the results we need to check the claim we made at the

beginning of this subsection. Comparing equations (3.11) and (3.20) we see immediately

that the supersymmetric AdS maxima of the potential always coincide with the minima of

the Kähler function.

3.3 Analysis of the scalar potential with non-vanishing D-terms

Let us now generalize the result of the previous subsection to the case where the gauge

couplings are turned on. In this case we have to add to the scalar potential the contribution

from D-terms (2.8b). In order to calculate the new contributions to the Hessian of the scalar

potential around the critical point ξI
0 we must find the derivatives of the D-term potential

at this point. Using that GI(ξ0) = 0 we find:

VD|IJ(ξ0) =
1

2
(Ref(ξ0))

−1 ab kR
a (ξ0)k

S̄
b (ξ̄0) [GIRGJS̄ + GJRGIS̄ ]ξ0 ,

VD|IJ̄(ξ0) =
1

2
(Ref(ξ0))

−1 ab kR
a (ξ0)k

S̄
b (ξ̄0) [GIRGJ̄ S̄ + GJ̄RGIS̄ ]ξ0 (3.22)

As we have done previously we will define the scalar fields ξI so that they have trivial

kinetic terms GIJ̄ = δIJ̄ and the Hermitian matrix X†X is diagonal. In the case of the D-

term potential we can simplify the calculations even further making use of the freedom we

have to define the gauge fields Aa
µ. Actually, the action is invariant under constant linear

transformations of the gauge fields Ab
µ = Ob

a Ãa
µ, with Ob

a any non-singular real matrix,

provided that the gauge kinetic functions fab and the Killing vectors kI
a transform as follows:

f̃cd = Oa
c Ob

d fab k̃I
b = Oa

b kI
a. (3.23)

In particular note that the gauge covariant derivatives and the Yang-Mills terms do not

transform under these redefinitions since:

Aa
µkI

a = Ãb
µk̃I

b , (Refab)F
a
µνF a µν = (Ref̃cd)F̃

c
µν F̃ d µν . (3.24)
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Then we can always use this freedom to turn Re fab into a matrix proportional to the

identity

Re fab = eG(ξ0) δab, (3.25)

where the overall factor has been chosen for convenience. Using these conventions, and

defining the matrix k = kI
a(ξ0), we can write the Hessian of the D-term potential as:

(

VD|IJ̄ VD|IJ

VD|ĪJ̄ VD|ĪJ

)

ξ0

=
1

2
eG(ξ0)

(

kk† + X kk†X† X kk† + k∗kT X

X† k∗kT + kk† X† k∗kT + X† k∗kT X

)

, (3.26)

which has to be added to (3.15) in order to get the Hessian of the full scalar potential.

Before we continue the calculation let us derive a useful property of the Killing vectors

k. We mentioned in the section (2.1) that the Kähler function G(ξI) has to be invariant

under gauge transformations. In particular in a Taylor expansion of the Kähler function

around ξ0 (3.1) all the terms have to be invariant under gauge transformations order by

order in ξ̂ = ξ−ξ0. From the gauge transformation of the order one terms in the expansion

we find the condition:
(

GIJ (ξ0) kJ
a (ξ0) + GIJ̄(ξ0) kJ̄

a (ξ0) + GI(ξ0) ∂JkI
a

)

ξ̂Iαa = 0, (3.27)

which has to be satisfied for all values of the gauge parameters αa, and the fluctuations

ξ̂I . Since GI(ξ0) = 0, then with our field definitions and in matrix notation this condition

reads simply:

k∗ = −Xk. (3.28)

An immediate consequence of this requirement is that the Killing vectors are eigenvectors

of the matrix X†X with eigenvalue gλ = 1:

X†X k = −X†k∗ = k, (3.29)

since XT = X. This means that the matrices kk† and kkT have all the entries zero except

in the block that corresponds to the eigenspace of eigenvalue |xλ|2 = 1 of X†X. As we

saw in the previous section the eigenvalue problem of the Hessian decouples in the different

eigenspaces of the matrix X†X. We have just proven that the corrections introduced by

the D-term potential respect this decoupling and moreover, that the corrections only affect

the eigenspace with eigenvalue |xλ|2 = 1. Therefore we can use the results of the previous

section for all the eigenspaces with |xλ| 6= 1 to find the corresponding eigenvalues. In

the remaining of this section we will just focus on solving the eigenvalue problem in the

eigenspace where |xλ|2 = 1, which we label by λ = 1. In order to keep notation simple,

we will use the matrices X1 and k1 to represent the submatrices corresponding to the

eigenspace λ = 1, thus:

X†
1X1 = X1X

†
1 = 1n1

. (3.30)

Notice that, since the hermitian matrix k1k
†
1 transforms under scalar field redefinitions in

the same way as X1X
†
1 , we can use the residual freedom to choose the eigenvectors in the

eigenspace with |xλ|2 = 1 to turn k1k
†
1 into a real diagonal matrix:

k1k
†
1 = Diag(|k1|2, . . . , |kn1

|2), (3.31)
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where n1 is the dimension of the eigenspace with |xλ|2 = 1. The final expression for the Hes-

sian of the full potential restricted to this eigenspace can be obtained from (3.26) and (3.15)

(

VIJ̄ VIJ

VĪ J̄ VĪJ

)

λ=1

= eG(ξ0)

(

−1+ k1k
†
1 (−1+ k1k

†
1)X1

(−1+ k1k
†
1) X†

1 −1+ k1k
†
1

)

, (3.32)

where we have used the properties (3.28), (3.31) and (3.30) in order to simplify (3.26). It is

easy to check that the matrices X1 and k1k
†
1 commute, therefore we can use equation (3.4)

in order to find the equation for the mass spectrum m2, which reads:

n1
∏

i=1

(

(

|ki|2 − 1 − e−G(ξ0) m2
)2

− (|ki|2 − 1)2
)

= 0, (3.33)

after having substituted the diagonal form of k1k
†
1 (3.31). The solutions to this equations,

together with the results we found in the previous section, which apply for |xλ| 6= 1 are

summarized below:

m2
±λ = eG(ξ0)

(

(

|xλ ± 1

2
|
)2

− 9

4

)

if |xλ|2 6= 1,

m2
+1i = 2eG(ξ0)

(

|ki|2 − 1
)

if |xλ|2 = 1,

m2
−1i = 0 if |xλ|2 = 1. (3.34)

The quantities |ki|2 determine the mass of the gauge bosons at the supersymmetric critical

point ξ0, therefore we can see that the breaking of gauge symmetries can only improve the

stability of vacuum. This result agrees with the analysis of Gómez-Reino and Scrucca of

the stability of uplifted vacua in [11].

The fact that the Killing vectors are associated to the eigenvalues |xλ|2 = 1 should not

be surprising. On the one hand the eigenvalues |xλ|2 = 1 are always related to marginally

stable directions m2 = 0. And on the other hand we know that the potential has to

be invariant under gauge transformations, thus each Killing vector has to be naturally

associated with a flat direction of the potential, which appear in the spectrum as massless

fluctuations (the would-be Goldstone bosons that disappear due to the Higgs mechanism).

In view of the result (3.34) we can argue that the presence of non-vanishing gauge

couplings does not modify the conclusion of the previous section, the minima of the Kähler

function G(ξI , ξĪ) are always in one to one correspondence with the supersymmetric AdS

maxima of the scalar potential.

4. Stability of uplifted vacua

We now return to the main question in this paper, the perturbative stability of the heavy

sector when these AdS supersymmetric vacua are uplifted to dS by supersymmetry breaking

effects in the light sector. In this section we again assume that the Kähler invariant function

is separable in the heavy and light sectors, eq. (2.16).
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4.1 Stability of uplifted vacua with zero D-term potential

We start by generalizing the results of [7] to an arbitrary number of heavy fields in the

supersymmetric sector. We assume all fields are uncharged.

Suppose that the set of chiral fields ξI can be split in two sectors: nh heavy fields

Hα and nl light fields Li, which are coupled as in (2.16). We will assume that the system

is stabilized at a critical point of the potential (Hα
0 , Li

0), which is also a supersymmetric

configuration of the heavy sector, Gα(H0, L0) = 0, but supersymmetry is broken in the light

sector, Gi(H0, L0) 6= 0. Then as discussed in section 2, the Hessian of the full potential has

a block diagonal form in the two sectors (2.19), and therefore it is consistent to consider

the stability of the potential only along the “heavy” and “light” directions independently.

We will take the light sector fixed at a perturbatively stable configuration, and we will

focus on the stability analysis along the heavy directions. For this purpose we only need

to calculate Vαβ̄(H0, L0) and Vαβ(H0, L0) from (2.17):

Vαβ̄(H0, L0) = eA+B |H0,L0

[

Aγδ̄AαγAβ̄δ̄ + (b − 2)Aαβ̄

]

H0

Vαβ(H0, L0) = eA+B |H0,L0
(b − 1)Aαβ(H0), (4.1)

where we are using the notation b = Bij̄BiBj̄|L0
. We will use same choice of fields as in

the previous section, where Hα are canonically normalized at Hα
0 and the matrix X†X is

real and diagonal, with X = Aαβ(H0). With this choice we obtain the following expression

for the Hessian of the potential at (Hα
0 , Li

0):

(

Vαβ̄ Vαβ

Vᾱβ̄ Vαβ̄

)

H0,L0

= eA+B |H0,L0

(

XX† + (b − 2)1 (b − 1)X

(b − 1)X† X†X + (b − 2)1) . (4.2)

Calculating the mass spectrum as in the previous section we arrive at our final result:

m2
±λ =eA+B|H0,L0

[

|xλ|2+(b−2) ± |(b−1)xλ|
]

=eA+B |H0,L0

[

(

|xλ| ±
1

2
(b−1)

)2

− 1

4
(b−3)2

]

.

(4.3)

To obtain the last expression we assumed that b > 1, but in the case b < 1 then m2
+λ

and m2
−λ have to be exchanged. For each energy level characterized by m2

±λ there are nλ

different excitations with the same mass, where, in analogy with the previous sections, nλ

represents the dimension of the eigenspace of X†X with eigenvalue |xλ|2. The stability

condition after uplifting the minimum of the potential to Minkowski or de Sitter, b ≥ 3,

reduces to m2
±λ > 0 for all λ = 1, . . . , p, but if the minimum remains AdS after the uplifting,

b < 3, the masses have to satisfy the Breitenlohner-Freedman bound (2.15):

for b < 3 =⇒
[

(

|xλ| ±
1

2
(b − 1)

)2

− 1

4
(b − 3)2

]

≥ 3

4
(b − 3),

for b ≥ 3 =⇒
[

(

|xλ| ±
1

2
(b − 1)

)2

− 1

4
(b − 3)2

]

≥ 0. (4.4)
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Figure 1: Stability of supersymmetric critical points after the uplifting. The quantity on the

vertical axis b − 3 is proportional to the cosmological constant (or the Hubble parameter during

inflation). The horizontal axis represents the curvature of the Kähler function at the critical point

along one of the heavy field directions Hα: |xλ| < 1 corresponds to local minima and |xλ| > to

saddle points. The shaded region represents stable configurations under perturbations of the heavy

fields. For b < 3 and b = 3 the uplifted vacua, which are AdS and Minkowski respectively, are always

stable. Local AdS minima of the scalar potential at zero uplifting, |xλ| > 2, are always destabilized

for large uplifting. Local AdS maxima, |xλ| < 1, remain stable for arbitrary large uplifting.

Recalling that b ≥ 0, and after a little bit of algebra, it is possible to see that the first of

the two inequalities is always satisfied. The second shows that there are no instabilities

when the minimum is uplifted to Minkowski b = 3, although zero modes are possible if

any |xλ| = 1. Thus, the instabilities can only arise for upliftings to dS. These results are

summarized in figure 1.

We can see that all the results we obtained in the study of a single modulus toy

model in [7] can be generalized to an arbitrary number of fields in the heavy sector. Local

AdS minima and saddle points before the uplifting are only stable for small values of the

cosmological constant, while local AdS maxima of the potential, which coincide with the

local minima of the Kähler function, are always stable.

4.2 Stability of uplifted vacua with a non-zero D-term potential

Now we study the stability of uplifted vacua when the gauge couplings are turned on.

Including gauge interactions is especially relevant in the case of the light sector, since it

includes the visible sector. In section 2 we mentioned that any gauge field that appears

in the effective theory cannot be coupled to the fields that are integrated out, otherwise

the gauge fields could act as sources for the truncated fields leading to an inconsistency.

For instance, if the truncated fields acquire an expectation value, any gauge field coupled

to it would be Higgsed and the full massive vector multiplet would have to be integrated

out as well. In our analysis, we will assume that Killing vectors and the gauge kinetic

functions satisfy the requirements for a consistent decoupling of the heavy sector described

in section 2. Moreover, we will ask the gauge fields in the heavy and light sectors to have

decoupled kinetic terms, or in other words, that the gauge kinetic function fab is block
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diagonal in the two sectors. Other than that we will allow the Killing vectors and the gauge

kinetic functions of the heavy sector to have an arbitrary dependence on the light and heavy

fields kα
a (H,L) and f

(h)
ab (H,L). Under these requirements the D-term potential reads

VD =
1

2

(

Ref(L)
)−1 ab

ki
a(L) kj̄

b(L̄) GiGj̄

+
1

2

(

Ref(H,L)
)−1 ab

kα
a (H,L) kβ̄

b (H̄, L̄) GαGβ̄ . (4.5)

Since the gauge kinetic functions and the Killing vectors of the light sector depend only

on the light fields, and Gi(H,L) = Ai(L), all the dependence of VD on the heavy fields

comes from the second term in (4.5). Therefore, using that Gα(H0) = 0, it is easy to check

that, despite the dependence of the D-term potential of the heavy sector on the light

fields, the critical points of the heavy sector are preserved. Moreover, the stability analysis

along the heavy field directions is also unaffected by the light sector. For example, the

Hessian of the potential at the critical point remains block diagonal in the two sectors,

VD|αi(H0, L0) = VD|αī(H0, L0) = 0, and the second derivatives of the D-term potential

along the heavy directions are given by:

VD|αβ(H0, L0) =
1

2

(

Ref(H0, L0)
)−1 ab

kγ
a(H0, L0) kδ̄

b (H̄0, L̄0) GγαGδ̄β,

VD|αβ̄(H0, L0) =
1

2

(

Ref(H0, L0)
)−1 ab

kγ
a(H0, L0) kδ̄

b (H̄0, L̄0) GγαGδ̄β̄. (4.6)

Thus, in order to find the mass matrix of the heavy fields at the critical point (Hα
0 , Li

0),

we only have to add the Hessian of the D-term potential with respect to the heavy fields to

the result we found for the F -term potential (4.2). We choose our heavy scalar fields so that

they have trivial kinetic terms Gαβ̄ = 1 and that the matrices X†X (X = Gαβ) and kα
a kβ̄

a

are both real and diagonal. We also define the gauge fields A
(h) a
µ such that the real parts

of the gauge kinetic functions of the heavy sector are proportional to the identity matrix:

Re f
(h)
ab = eG|H0,L0

δab. (4.7)

The calculation of the D-term contribution to the Hessian can be done along the same

lines as in section (4.2). Is not difficult to check that the properties (3.28) and (3.29)

still hold, thus here again the matrices kk† and kkT , with k = kα
a , have non-vanishing

components only in the eigenspace corresponding to the eigenvalue |xλ|2 = 1. Thus, after

some simplifications, the Hessian of the total scalar potential reads:

(

Vαβ̄ Vαβ

Vᾱβ̄ Vαβ̄

)

H0,L0

= eA+B |H0,L0

(

XX† + kk† + (b − 2)1 (b − 1 + kk†)X

(b − 1 + kk†)X† X†X + kk† + (b − 2)1) . (4.8)

From this expression it is straightforward to find the mass spectrum of fluctuations of the

heavy sector along the heavy directions:

m2
±λ = eG(ξ0)

(

(

|xλ ± 1

2
(b − 1)|

)2

− 1

4
(b − 3)2

)

if |xλ|2 6= 1,
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m2
+1i = 2 eG(ξ0)

(

|ki|2 + b − 1
)

if |xλ|2 = 1,

m2
−1i = 0 if |xλ|2 = 1. (4.9)

We can see that figure 1 is still valid when we include the gauge interactions. The only

difference with the result in the previous section is that if some of the gauge symmetries

are spontaneously broken the mass degeneracy in the eigenspace with |xλ| = 1 is destroyed.

From (4.9) we can see that the presence of gauge interactions only increases the stability

of the critical point.

5. More general couplings

An interesting question to consider is whether it is possible apply our results to other

systems where light and heavy moduli are not coupled with the ansatz (2.16). Let us

assume only the mild condition that the Kähler potentials are separable in the light and

heavy sectors:

K = Kh(H, H̄) + K l(L, L̄).

This condition ensures that mixed derivatives of the Kähler function of the form

Giᾱ(H0, L0), Giᾱβ(H0, L0) et cetera. . . involving both holomorphic and antiholomorphic

indices from the two sectors must vanish. We will also focus on cases where supersymmetry

is unbroken at low energies, thus we take the heavy fields fixed at a supersymmetric

critical point.

As we discussed in section 2, the condition that the potential has to be block diagonal

on the light and heavy fields is necessary in order to integrate out the heavy fields con-

sistently. Therefore, in any scenario where part of the moduli are going to be integrated

out the stability of these fields can be studied independently considering only the ”heavy”

directions in field space. In order to recover a mass matrix of the form (4.2) and (4.8) we

would need to satisfy the extra condition:

Giα(H0, L0) = 0. (5.1)

We can prove this equation from the requirement that the low energy effective action must

be invariant under supersymmetry transformations. In particular, this requirement means

that the supersymmetry transformations cannot generate the fields that we have truncated.

Consider the supersymmetry transformation of the fermions on the heavy sector, which in

a homogeneous bosonic background are simply

δχα
L = −1

2
e

K
2 W̄Gαβ̄Gβ̄ ǫL. (5.2)

Expanding this expression to first order in the fluctuations of the light fields around the

critical point Li = Li
0 + L̂i gives:

δχα
L = −1

2
e

K
2 W̄Gαβ̄Gīβ̄(H0, L0) L̂īǫL. (5.3)

We can see that, unless the quantity Giα(H0, L0) vanishes, the supersymmetry transfor-

mations will generate the fermions of the heavy sector (W 6= 0). The condition (5.1) also
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ensures that the point where we are fixing the heavy moduli is an extremum of the scalar

potential:

Vα(H0, L0) =
[

eGGij̄GiαGj̄

]

H0,L0

= 0, (5.4)

where we have already used that the Kähler potential is separable and Gα(H0, L0) = 0.

Since all the mixed derivatives of the Kähler potential Giα(H0, L0) and Giᾱ(H0, L0)

vanish, it makes sense to study the curvature of G(H,L) at the critical point Hα
0 only

along the heavy directions. Thus, we can repeat the analysis of section 3.1 arriving at

similar conclusions:

• The Kähler function G(L,H) has a local minimum at Hα
0 along the heavy directions if

the eigenvalues of the matrix X†X satisfy the conditions |xλ| < 1 for all λ = 1, . . . , p,

with X = Gαβ(H0, L0).

• If any of the eigenvalues of X†X satisfies |xλ| > 1 the function G(H,L) has a saddle

point at H0.

• For each eigenvalue of X†X satisfying |xλ| = 1 the Kähler function has a neutrally

stable direction and a minimum along some complex direction Hα.

Using all these results, we can now study the stability of the scalar potential along the heavy

directions as in section 3.2. The second derivatives of the scalar potential are given by

Vαβ(H0, L0) = eG|H0,L0

[

(b − 1)Gαβ + Gij̄GiαβGj̄

]

H0,L0

, (5.5)

Vαβ̄(H0, L0) = eG|H0,L0

[

Gγδ̄GαγGβ̄δ̄ + (b − 2)Gαβ̄

]

H0,L0

, (5.6)

where we have used the notation b = Gij̄GiGj̄ |H0,L0
.

Note that, apart from the second term in the equation (5.5), the result we have obtained

is of the same form as (4.1). If the quantity Giαβ stays of order O(1), the extra term that

we have obtained is roughly of order O(b1/2), which means that for large values of the

uplifting, b ≫ 3, it will become subdominant. Therefore, in this limit, the mass matrix

becomes proportional to the Hessian of the Kähler function at Hα
0 :

(

Vαβ̄ Vαβ

Vᾱβ̄ Vαβ̄

)

H0,L0

= b

( 1 X

X† 1) eA+B|H0,L0
= b

(

Gαβ̄ Gαβ

Gᾱβ̄ Gᾱβ

)

H0,L0

eA+B |H0,L0
, (5.7)

indicating that the minima of the Kähler function along the heavy directions will always

survive uplifting to an arbitrary large value of the cosmological constant. Note also that

before uplifing, Gi(H0, L0) = 0, the mass matrix given by (5.6) coincides with (3.14), so

we can again identify the AdS maxima of the scalar potential with the local minima of the

Käher function along the heavy directions.

We would like to emphasize that in order to obtain this result we have made very

mild assumptions. We have required that the Kähler potential is separable in the two

sectors, we have also imposed the condition that the effective action left after integrating

out the heavy moduli is invariant under supersymmetry, and finally we asked the quantity
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Giαβ to stay of order O(1) for large values of the uplifting. In this scenario we have

proved that the AdS maxima of the potential along the heavy directions at zero uplifting

(Gi(H0, L0) = 0), which are perturbatively stable configurations, remain stable after the

uplifting for arbitrary large values of the cosmological constant.

6. Summary and conclusions

In this paper we have studied in detail the stability properties of the F -term uplifting

mechanism recently proposed in [7]. This way of uplifting AdS vacua guarantees that

the interactions between the uplifting sector and the moduli of the compactification are

consistent with integrating out the heavy fields in a supersymmetric way [5]. The exact

composition of the heavy sector in a KKLT scenario depends on the details of the compact-

ification, but we expect it to include the complex structure moduli and some heavy Kähler

moduli. In that case the light sector would comprise the remaining Kähler moduli, the

visible matter fields and the hidden sector where supersymmetry is spontaneously broken.

In this type of F -term uplifting mechanisms the couplings between the light fields L

and heavy fields H are characterized by the separability of the Kähler invariant function

of the total theory

G(H, H̄, L, L̄) = G(h)(H, H̄) + G(l)(L, L̄),

which can be expressed in terms of the Kähler potential and the superpotential as follows:

K(H, H̄, L, L̄) = K(h)(H, H̄) + K l(L, L̄)

W (H,L) = W (h)(H)W (l)(L).

This ansatz is approximately satisfied by the couplings between the frozen complex struc-

ture moduli and the Kähler moduli in large volume scenarios [40 – 42]. In these models it

ensures the consistency of including the non-perturbative effects with the supersymmetric

integration of the complex structure moduli.2

The key property of this type of coupling is that the heavy fields remain at a super-

symmetric configuration after coupling them to the light sector, even when supersymmetry

is broken by the light fields. In view of the direct couplings in the superpotential it might

appear that the two sectors are strongly interacting, and thus that the supersymmetry

breaking is likely to spoil the stabilization of the heavy moduli. However, a more care-

ful analysis reveals that the two sectors are essentially decoupled. For instance, the mass

matrix of field fluctuations around the uplifted vacuum is block diagonal in the light and

heavy directions. This implies that the stability analysis can be done independently for the

light and heavy sectors. In this paper we have focused on the study of the stability of the

heavy moduli that are integrated out. Our results completely confirm and generalize those

of the toy model considered in [7], where the heavy sector consisted of a single modulus.

More precisely, there is always a basis such that the mass matrix and the Kähler metric can

be diagonalized simultaneously. This allows expressing the stability requirement of having

2We thank Joe Conlon for a discussion on this point.
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a positive definite mass matrix as a constraint on the curvature of the Kähler function at

the uplifted vacuum (4.4). We found that the stability diagram obtained for the toy model

holds separately for each eigenvalue of the mass matrix of the uplifted scalar potential,

figure 1. In particular our results show that if the heavy fields are fixed at a minimum of

the Kähler function the configuration remains stable for any final value of the cosmological

constant. However, if the heavy fields are fixed at a saddle point of the Kähler function

(the Kähler function cannot have maxima), the configuration always becomes unstable for

large enough values of the cosmological constant.

This analysis complements that of Covi et al. [26], who formulated a necessary (and

in most practical situations sufficient) condition for the existence of (meta)stable de Sitter

vacua, following earlier work by Gómez Reino and Scrucca [9 – 11]. The constraint restricts

the Kähler geometry of the non-linear sigma model associated to the chiral multiplets.

Expressed in terms of the metric GIJ̄ and the Riemann tensor RIJ̄MN̄ of the Kähler

manifold it reads:

σ ≡
[

1

3

(

GIJ̄GMN̄ + GIN̄GMJ̄

)

− RIJ̄MN̄

]

GIGJ̄GMGN̄ > 0. (6.1)

This condition, they point out, is e.g. not satisfied by moduli with no-scale Kähler functions

of the form K = −3 log(ξ + ξ̄), or more generally K = −∑I nI log(ξI + ξ̄Ī),
∑

I nI =

3. Clearly, the constraint (6.1) is only sensitive to the geometry of the Kähler manifold

along the direction of the goldstino vector GI , and therefore it can say nothing about the

perturbative stability of moduli with zero F-terms, GI = 0. In particular, it cannot be used

to restrict the interactions of those fields that are supersymmetrically decoupled — in the

sense of [5] — from the sector that breaks supersymmetry. Our work provides necessary

and sufficient conditions for the perturbative stability of these GI = 0 fields in a particular

class of models where they are supersymmetrically decoupled.

Finally, we have also confirmed that the one-to-one correspondence found in [7] between

local minima of the Kähler invariant function G and (stable) AdS supersymmetric vacua

that are local maxima of the scalar potential is completely general. These supersymmetric

vacua satisfy the Breitenlohner-Freedman bound and are therefore stable. Our results im-

ply that supersymmetric AdS maxima remain perturbatively stable when supersymmetry is

broken by a supersymmetrically decoupled sector satisfying eq. (2.16). Moreover, we have

been able to prove that even in more general scenarios where the integrated heavy moduli

do not satisfy (2.16), the supersymmetric AdS maxima are always stable for large values of

the cosmological constant. To our knowledge, the uplifting of (AdS) supersymmetric local

maxima of the scalar potential has not been considered before and constitutes a new class

of stable de Sitter vacua and inflationary troughs whose phenomenology has to be explored.
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